Artificial General Intelligence
Z Wiki OpenTX
Artificial basic intelligence (AGI) is a kind of synthetic intelligence (AI) that matches or goes beyond human cognitive abilities across a large range of cognitive tasks. This contrasts with narrow AI, which is limited to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that significantly surpasses human cognitive capabilities. AGI is thought about one of the definitions of strong AI.
Creating AGI is a main objective of AI research and of business such as OpenAI [2] and Meta. [3] A 2020 study identified 72 active AGI research and development projects throughout 37 countries. [4]
The timeline for attaining AGI stays a topic of continuous debate among scientists and professionals. Since 2023, some argue that it might be possible in years or years; others preserve it might take a century or longer; a minority believe it may never ever be achieved; and another minority claims that it is already here. [5] [6] Notable AI researcher Geoffrey Hinton has expressed concerns about the fast progress towards AGI, recommending it could be achieved quicker than numerous expect. [7]
There is debate on the precise definition of AGI and concerning whether modern-day big language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a typical subject in sci-fi and futures studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many professionals on AI have actually specified that alleviating the risk of human termination positioned by AGI must be a worldwide priority. [14] [15] Others find the advancement of AGI to be too remote to present such a threat. [16] [17]
Terminology
AGI is also called strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or general smart action. [21]
Some scholastic sources reserve the term "strong AI" for computer programs that experience sentience or consciousness. [a] On the other hand, weak AI (or narrow AI) has the ability to solve one specific issue however does not have basic cognitive abilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the very same sense as human beings. [a]
Related principles consist of synthetic superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical type of AGI that is a lot more typically intelligent than human beings, [23] while the notion of transformative AI relates to AI having a big impact on society, for instance, comparable to the agricultural or commercial transformation. [24]
A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They define five levels of AGI: emerging, qualified, professional, virtuoso, and superhuman. For instance, a proficient AGI is specified as an AI that exceeds 50% of experienced adults in a large range of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is similarly defined however with a threshold of 100%. They consider large language designs like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have actually been proposed. Among the leading proposals is the Turing test. However, there are other well-known definitions, and some researchers disagree with the more popular approaches. [b]
Intelligence traits
Researchers normally hold that intelligence is needed to do all of the following: [27]
reason, usage strategy, solve puzzles, and make judgments under unpredictability
represent understanding, including sound judgment understanding
strategy
discover
- interact in natural language
- if required, incorporate these skills in completion of any given objective
Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and choice making) think about additional characteristics such as creativity (the ability to form unique mental images and ideas) [28] and autonomy. [29]
Computer-based systems that exhibit much of these capabilities exist (e.g. see computational imagination, automated thinking, choice support group, robot, evolutionary calculation, intelligent representative). There is argument about whether contemporary AI systems have them to an appropriate degree.
Physical traits
Other abilities are thought about desirable in smart systems, as they might affect intelligence or help in its expression. These include: [30]
- the ability to sense (e.g. see, hear, etc), and
- the ability to act (e.g. move and control items, modification location to check out, and so on).
This consists of the ability to identify and react to danger. [31]
Although the capability to sense (e.g. see, hear, and so on) and the capability to act (e.g. relocation and control items, change place to explore, and so on) can be desirable for some smart systems, [30] these physical abilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that big language designs (LLMs) may already be or become AGI. Even from a less optimistic perspective on LLMs, there is no company requirement for an AGI to have a human-like kind; being a silicon-based computational system is adequate, provided it can process input (language) from the external world in location of human senses. This analysis lines up with the understanding that AGI has actually never ever been proscribed a specific physical personification and therefore does not demand a capability for locomotion or traditional "eyes and ears". [32]
Tests for human-level AGI
Several tests implied to confirm human-level AGI have been thought about, consisting of: [33] [34]
The concept of the test is that the machine has to try and pretend to be a guy, by responding to concerns put to it, and it will only pass if the pretence is fairly persuading. A considerable portion of a jury, who should not be skilled about makers, should be taken in by the pretence. [37]
AI-complete issues
A problem is informally called "AI-complete" or "AI-hard" if it is believed that in order to solve it, one would require to implement AGI, since the option is beyond the capabilities of a purpose-specific algorithm. [47]
There are lots of problems that have actually been conjectured to require general intelligence to resolve along with people. Examples include computer vision, natural language understanding, and handling unanticipated scenarios while solving any real-world problem. [48] Even a particular task like translation needs a device to check out and write in both languages, follow the author's argument (reason), comprehend the context (understanding), and faithfully replicate the author's initial intent (social intelligence). All of these issues need to be resolved concurrently in order to reach human-level device efficiency.
However, a lot of these jobs can now be carried out by modern big language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level efficiency on many benchmarks for checking out understanding and visual reasoning. [49]
History
Classical AI
Modern AI research study started in the mid-1950s. [50] The very first generation of AI researchers were convinced that artificial basic intelligence was possible and that it would exist in just a few years. [51] AI leader Herbert A. Simon composed in 1965: "machines will be capable, within twenty years, of doing any work a guy can do." [52]
Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they could create by the year 2001. AI leader Marvin Minsky was a specialist [53] on the project of making HAL 9000 as practical as possible according to the consensus forecasts of the time. He stated in 1967, "Within a generation ... the problem of developing 'artificial intelligence' will substantially be solved". [54]
Several classical AI projects, such as Doug Lenat's Cyc task (that began in 1984), and Allen Newell's Soar task, were directed at AGI.
However, in the early 1970s, it became apparent that researchers had actually grossly underestimated the trouble of the task. Funding firms ended up being skeptical of AGI and put scientists under increasing pressure to produce helpful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI goals like "carry on a table talk". [58] In action to this and the success of specialist systems, both market and federal government pumped cash into the field. [56] [59] However, self-confidence in AI spectacularly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never ever satisfied. [60] For the 2nd time in 20 years, AI researchers who anticipated the imminent accomplishment of AGI had actually been misinterpreted. By the 1990s, AI scientists had a track record for making vain pledges. They ended up being unwilling to make forecasts at all [d] and avoided reference of "human level" artificial intelligence for worry of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI achieved industrial success and academic respectability by focusing on specific sub-problems where AI can produce proven outcomes and industrial applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now utilized thoroughly throughout the technology market, and research in this vein is heavily moneyed in both academia and industry. Since 2018 [upgrade], advancement in this field was thought about an emerging pattern, and a fully grown phase was expected to be reached in more than ten years. [64]
At the turn of the century, many mainstream AI researchers [65] hoped that strong AI could be developed by integrating programs that solve various sub-problems. Hans Moravec composed in 1988:
I am confident that this bottom-up route to expert system will one day satisfy the conventional top-down route more than half method, ready to supply the real-world skills and the commonsense knowledge that has actually been so frustratingly elusive in reasoning programs. Fully intelligent devices will result when the metaphorical golden spike is driven uniting the 2 efforts. [65]
However, even at the time, this was disputed. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by mentioning:
The expectation has frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is really only one viable path from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we should even try to reach such a level, because it appears arriving would just amount to uprooting our signs from their intrinsic meanings (thus merely lowering ourselves to the functional equivalent of a programmable computer). [66]
Modern synthetic basic intelligence research study
The term "synthetic general intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the implications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative increases "the ability to satisfy objectives in a wide variety of environments". [68] This type of AGI, defined by the capability to increase a mathematical meaning of intelligence rather than display human-like behaviour, [69] was also called universal synthetic intelligence. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The first summer school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was provided in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and including a variety of visitor speakers.
Since 2023 [update], a little number of computer system researchers are active in AGI research study, and many add to a series of AGI conferences. However, significantly more scientists are interested in open-ended learning, [76] [77] which is the idea of enabling AI to continuously discover and innovate like humans do.
Feasibility
Since 2023, the development and potential accomplishment of AGI remains a topic of intense argument within the AI community. While conventional consensus held that AGI was a distant objective, recent advancements have actually led some scientists and industry figures to declare that early forms of AGI might currently exist. [78] AI pioneer Herbert A. Simon speculated in 1965 that "makers will be capable, within twenty years, of doing any work a male can do". This forecast stopped working to come true. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century because it would need "unforeseeable and basically unpredictable breakthroughs" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between modern-day computing and human-level expert system is as broad as the gulf in between current area flight and useful faster-than-light spaceflight. [80]
A further difficulty is the lack of clarity in defining what intelligence requires. Does it need consciousness? Must it display the ability to set goals in addition to pursue them? Is it simply a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are facilities such as planning, reasoning, and causal understanding required? Does intelligence need explicitly reproducing the brain and its specific faculties? Does it require emotions? [81]
Most AI scientists think strong AI can be achieved in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of accomplishing strong AI. [82] [83] John McCarthy is among those who think human-level AI will be achieved, however that the present level of development is such that a date can not accurately be predicted. [84] AI experts' views on the feasibility of AGI wax and subside. Four polls conducted in 2012 and 2013 recommended that the mean estimate among professionals for when they would be 50% positive AGI would arrive was 2040 to 2050, depending on the survey, with the mean being 2081. Of the experts, 16.5% responded to with "never" when asked the very same concern but with a 90% self-confidence rather. [85] [86] Further current AGI progress factors to consider can be discovered above Tests for validating human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year amount of time there is a strong predisposition towards forecasting the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They examined 95 forecasts made in between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft scientists released an in-depth assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, our company believe that it might reasonably be deemed an early (yet still incomplete) version of a synthetic basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 exceeds 99% of humans on the Torrance tests of innovative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a considerable level of basic intelligence has currently been accomplished with frontier designs. They wrote that reluctance to this view originates from four main reasons: a "healthy uncertainty about metrics for AGI", an "ideological dedication to alternative AI theories or techniques", a "devotion to human (or biological) exceptionalism", or a "issue about the financial ramifications of AGI". [91]
2023 also marked the development of big multimodal models (large language designs capable of processing or generating numerous modalities such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the first of a series of models that "invest more time thinking before they react". According to Mira Murati, this ability to think before responding represents a brand-new, extra paradigm. It enhances model outputs by investing more computing power when producing the answer, whereas the design scaling paradigm enhances outputs by increasing the model size, training data and training compute power. [93] [94]
An OpenAI employee, Vahid Kazemi, claimed in 2024 that the company had accomplished AGI, stating, "In my viewpoint, we have currently accomplished AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "much better than a lot of human beings at many jobs." He also dealt with criticisms that large language designs (LLMs) merely follow predefined patterns, comparing their learning process to the clinical method of observing, assuming, and confirming. These declarations have triggered dispute, as they rely on a broad and unconventional meaning of AGI-traditionally understood as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models show amazing adaptability, they may not fully satisfy this requirement. Notably, Kazemi's remarks came soon after OpenAI got rid of "AGI" from the terms of its partnership with Microsoft, triggering speculation about the company's strategic intents. [95]
Timescales
Progress in synthetic intelligence has actually historically gone through durations of rapid development separated by durations when progress appeared to stop. [82] Ending each hiatus were essential advances in hardware, software or both to create space for further development. [82] [98] [99] For instance, the computer system hardware available in the twentieth century was not sufficient to implement deep knowing, which needs large numbers of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel states that estimates of the time needed before a genuinely flexible AGI is built differ from ten years to over a century. As of 2007 [upgrade], the consensus in the AGI research study community seemed to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was possible. [103] Mainstream AI scientists have given a large range of opinions on whether development will be this quick. A 2012 meta-analysis of 95 such viewpoints found a bias towards predicting that the beginning of AGI would take place within 16-26 years for modern and historical predictions alike. That paper has been slammed for how it categorized viewpoints as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, substantially much better than the second-best entry's rate of 26.3% (the conventional method used a weighted amount of scores from different pre-defined classifiers). [105] AlexNet was considered as the initial ground-breaker of the present deep learning wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on publicly offered and freely available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds around to a six-year-old kid in first grade. An adult pertains to about 100 on average. Similar tests were carried out in 2014, with the IQ rating reaching a maximum worth of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model efficient in carrying out lots of diverse jobs without specific training. According to Gary Grossman in a VentureBeat short article, while there is agreement that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]
In the same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI asked for modifications to the chatbot to adhere to their safety standards; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system efficient in performing more than 600 different tasks. [110]
In 2023, Microsoft Research released a study on an early variation of OpenAI's GPT-4, competing that it displayed more general intelligence than previous AI models and demonstrated human-level performance in tasks spanning several domains, such as mathematics, coding, and law. This research stimulated a dispute on whether GPT-4 could be thought about an early, insufficient version of artificial basic intelligence, highlighting the need for further exploration and evaluation of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton mentioned that: [112]
The concept that this stuff could actually get smarter than individuals - a few individuals believed that, [...] But the majority of individuals believed it was way off. And I believed it was method off. I thought it was 30 to 50 years or perhaps longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis likewise stated that "The development in the last few years has been pretty incredible", which he sees no reason that it would slow down, expecting AGI within a years and even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within five years, AI would be capable of passing any test a minimum of as well as human beings. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a former OpenAI staff member, estimated AGI by 2027 to be "noticeably plausible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is thought about the most appealing path to AGI, [116] [117] whole brain emulation can serve as an alternative technique. With whole brain simulation, a brain model is constructed by scanning and mapping a biological brain in information, and after that copying and imitating it on a computer system or another computational device. The simulation model need to be sufficiently faithful to the original, so that it acts in practically the very same way as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is talked about in computational neuroscience and neuroinformatics, and for medical research functions. It has been discussed in artificial intelligence research study [103] as an approach to strong AI. Neuroimaging innovations that could provide the necessary in-depth understanding are enhancing quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of sufficient quality will appear on a comparable timescale to the computing power required to replicate it.
Early estimates
For low-level brain simulation, an extremely effective cluster of computer systems or GPUs would be needed, provided the massive quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, stabilizing by their adult years. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based upon a simple switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at numerous price quotes for the hardware required to equate to the human brain and adopted a figure of 1016 computations per 2nd (cps). [e] (For contrast, if a "calculation" was comparable to one "floating-point operation" - a procedure utilized to rate existing supercomputers - then 1016 "computations" would be comparable to 10 petaFLOPS, accomplished in 2011, while 1018 was attained in 2022.) He utilized this figure to anticipate the required hardware would be offered at some point between 2015 and 2025, if the exponential growth in computer power at the time of composing continued.
Current research
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has established an especially in-depth and openly accessible atlas of the human brain. [124] In 2023, researchers from Duke University carried out a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The artificial nerve cell model assumed by Kurzweil and utilized in numerous present synthetic neural network implementations is easy compared with biological nerve cells. A brain simulation would likely need to catch the detailed cellular behaviour of biological nerve cells, currently understood just in broad outline. The overhead introduced by complete modeling of the biological, chemical, and physical details of neural behaviour (specifically on a molecular scale) would require computational powers a number of orders of magnitude larger than Kurzweil's estimate. In addition, the estimates do not account for glial cells, which are known to contribute in cognitive processes. [125]
An essential criticism of the simulated brain approach originates from embodied cognition theory which asserts that human personification is an essential aspect of human intelligence and is needed to ground meaning. [126] [127] If this theory is correct, any completely practical brain model will require to incorporate more than simply the neurons (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as a choice, however it is unknown whether this would be adequate.
Philosophical point of view
"Strong AI" as specified in philosophy
In 1980, thinker John Searle created the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference in between two hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "consciousness".
Weak AI hypothesis: An expert system system can (just) imitate it thinks and has a mind and consciousness.
The first one he called "strong" due to the fact that it makes a more powerful statement: it assumes something unique has taken place to the machine that goes beyond those capabilities that we can evaluate. The behaviour of a "weak AI" machine would be exactly identical to a "strong AI" maker, however the latter would likewise have subjective conscious experience. This use is likewise common in scholastic AI research study and textbooks. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to indicate "human level synthetic basic intelligence". [102] This is not the like Searle's strong AI, unless it is presumed that consciousness is essential for human-level AGI. Academic philosophers such as Searle do not believe that holds true, and to most synthetic intelligence scientists the question is out-of-scope. [130]
Mainstream AI is most thinking about how a program acts. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no need to know if it actually has mind - certainly, there would be no chance to inform. For AI research study, Searle's "weak AI hypothesis" is equivalent to the declaration "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for granted, and don't care about the strong AI hypothesis." [130] Thus, for scholastic AI research study, "Strong AI" and "AGI" are 2 various things.
Consciousness
Consciousness can have numerous meanings, and some elements play substantial roles in sci-fi and the ethics of synthetic intelligence:
Sentience (or "remarkable consciousness"): The ability to "feel" understandings or feelings subjectively, instead of the capability to factor about perceptions. Some thinkers, such as David Chalmers, utilize the term "awareness" to refer solely to phenomenal awareness, which is approximately equivalent to sentience. [132] Determining why and how subjective experience develops is known as the tough issue of awareness. [133] Thomas Nagel discussed in 1974 that it "seems like" something to be mindful. If we are not conscious, then it doesn't feel like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat appears to be conscious (i.e., has awareness) but a toaster does not. [134] In 2022, a Google engineer declared that the company's AI chatbot, LaMDA, had actually attained sentience, though this claim was widely challenged by other specialists. [135]
Self-awareness: To have conscious awareness of oneself as a different individual, specifically to be consciously knowledgeable about one's own thoughts. This is opposed to just being the "subject of one's believed"-an operating system or debugger is able to be "mindful of itself" (that is, to represent itself in the very same method it represents everything else)-however this is not what people normally mean when they utilize the term "self-awareness". [g]
These traits have a moral dimension. AI life would provide rise to concerns of welfare and legal defense, similarly to animals. [136] Other elements of awareness related to cognitive abilities are likewise appropriate to the principle of AI rights. [137] Figuring out how to integrate innovative AI with existing legal and social frameworks is an emerging issue. [138]
Benefits
AGI could have a wide array of applications. If oriented towards such goals, AGI might assist alleviate different issues worldwide such as hunger, hardship and illness. [139]
AGI might enhance productivity and performance in many jobs. For instance, in public health, AGI could speed up medical research study, especially against cancer. [140] It might take care of the senior, [141] and democratize access to fast, top quality medical diagnostics. It might offer fun, cheap and individualized education. [141] The requirement to work to subsist could become obsolete if the wealth produced is effectively rearranged. [141] [142] This also raises the concern of the location of humans in a significantly automated society.
AGI could also help to make logical choices, and to expect and avoid catastrophes. It might likewise help to reap the benefits of potentially catastrophic technologies such as nanotechnology or climate engineering, while avoiding the associated risks. [143] If an AGI's primary goal is to prevent existential disasters such as human extinction (which could be challenging if the Vulnerable World Hypothesis turns out to be real), [144] it could take measures to dramatically minimize the dangers [143] while decreasing the effect of these measures on our lifestyle.
Risks
Existential risks
AGI might represent multiple types of existential danger, which are threats that threaten "the of Earth-originating smart life or the long-term and extreme damage of its capacity for desirable future development". [145] The risk of human extinction from AGI has actually been the subject of lots of arguments, but there is likewise the possibility that the advancement of AGI would result in a permanently flawed future. Notably, it could be used to spread and preserve the set of values of whoever develops it. If mankind still has ethical blind areas similar to slavery in the past, AGI may irreversibly entrench it, avoiding ethical progress. [146] Furthermore, AGI could facilitate mass surveillance and indoctrination, which might be used to produce a stable repressive around the world totalitarian regime. [147] [148] There is also a danger for the makers themselves. If machines that are sentient or otherwise worthwhile of moral factor to consider are mass produced in the future, taking part in a civilizational course that indefinitely ignores their well-being and interests might be an existential catastrophe. [149] [150] Considering just how much AGI might enhance mankind's future and help in reducing other existential risks, Toby Ord calls these existential threats "an argument for proceeding with due care", not for "abandoning AI". [147]
Risk of loss of control and human extinction
The thesis that AI presents an existential risk for human beings, which this risk requires more attention, is questionable however has been endorsed in 2023 by numerous public figures, AI researchers and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized extensive indifference:
So, dealing with possible futures of enormous benefits and threats, the specialists are undoubtedly doing everything possible to guarantee the very best outcome, right? Wrong. If an exceptional alien civilisation sent us a message saying, 'We'll get here in a couple of years,' would we just reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is happening with AI. [153]
The possible fate of humankind has in some cases been compared to the fate of gorillas threatened by human activities. The comparison mentions that greater intelligence permitted humanity to dominate gorillas, which are now susceptible in ways that they could not have actually anticipated. As an outcome, the gorilla has become an endangered species, not out of malice, but simply as a civilian casualties from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate humankind which we must be careful not to anthropomorphize them and analyze their intents as we would for people. He said that individuals won't be "clever enough to develop super-intelligent makers, yet ridiculously foolish to the point of offering it moronic objectives with no safeguards". [155] On the other side, the concept of important merging recommends that almost whatever their objectives, intelligent representatives will have reasons to try to make it through and get more power as intermediary actions to accomplishing these goals. Which this does not require having feelings. [156]
Many scholars who are worried about existential threat supporter for more research study into fixing the "control issue" to respond to the concern: what types of safeguards, algorithms, or architectures can programmers execute to maximise the probability that their recursively-improving AI would continue to act in a friendly, instead of harmful, way after it reaches superintelligence? [157] [158] Solving the control problem is complicated by the AI arms race (which might lead to a race to the bottom of safety preventative measures in order to launch items before competitors), [159] and making use of AI in weapon systems. [160]
The thesis that AI can posture existential danger also has critics. Skeptics generally say that AGI is not likely in the short-term, or that issues about AGI sidetrack from other concerns associated with current AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for numerous individuals outside of the technology industry, existing chatbots and LLMs are already perceived as though they were AGI, causing additional misunderstanding and fear. [162]
Skeptics often charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence replacing an unreasonable belief in an omnipotent God. [163] Some researchers think that the communication projects on AI existential threat by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulatory capture and to pump up interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other market leaders and scientists, provided a joint statement asserting that "Mitigating the danger of termination from AI ought to be a global priority along with other societal-scale threats such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI estimated that "80% of the U.S. workforce might have at least 10% of their work jobs affected by the intro of LLMs, while around 19% of employees may see a minimum of 50% of their tasks impacted". [166] [167] They consider office workers to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI could have a better autonomy, ability to make decisions, to interface with other computer tools, but likewise to manage robotized bodies.
According to Stephen Hawking, the result of automation on the quality of life will depend on how the wealth will be rearranged: [142]
Everyone can delight in a life of elegant leisure if the machine-produced wealth is shared, or the majority of people can end up badly poor if the machine-owners effectively lobby versus wealth redistribution. Up until now, the pattern appears to be toward the 2nd option, with innovation driving ever-increasing inequality
Elon Musk thinks about that the automation of society will need federal governments to adopt a universal basic income. [168]
See likewise
Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain
AI result
AI safety - Research location on making AI safe and helpful
AI positioning - AI conformance to the desired objective
A.I. Rising - 2018 film directed by Lazar Bodroža
Artificial intelligence
Automated machine knowing - Process of automating the application of artificial intelligence
BRAIN Initiative - Collaborative public-private research effort announced by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research centre
General game playing - Ability of artificial intelligence to play different video games
Generative artificial intelligence - AI system efficient in producing content in reaction to triggers
Human Brain Project - Scientific research study job
Intelligence amplification - Use of details innovation to augment human intelligence (IA).
Machine principles - Moral behaviours of man-made makers.
Moravec's paradox.
Multi-task knowing - Solving numerous maker discovering jobs at the very same time.
Neural scaling law - Statistical law in artificial intelligence.
Outline of expert system - Overview of and topical guide to expert system.
Transhumanism - Philosophical movement.
Synthetic intelligence - Alternate term for or form of synthetic intelligence.
Transfer learning - Artificial intelligence method.
Loebner Prize - Annual AI competitors.
Hardware for expert system - Hardware specifically designed and optimized for synthetic intelligence.
Weak expert system - Form of expert system.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the short article Chinese room.
^ AI creator John McCarthy composes: "we can not yet identify in basic what sort of computational treatments we wish to call intelligent. " [26] (For a conversation of some definitions of intelligence used by expert system researchers, see approach of expert system.).
^ The Lighthill report particularly slammed AI's "grandiose goals" and led the taking apart of AI research in England. [55] In the U.S., DARPA ended up being figured out to money only "mission-oriented direct research, instead of standard undirected research". [56] [57] ^ As AI founder John McCarthy composes "it would be a great relief to the rest of the workers in AI if the inventors of brand-new basic formalisms would reveal their hopes in a more safeguarded form than has actually in some cases held true." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented.
^ As specified in a basic AI book: "The assertion that devices could perhaps act intelligently (or, perhaps better, act as if they were intelligent) is called the 'weak AI' hypothesis by thinkers, and the assertion that makers that do so are in fact believing (instead of replicating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to carry out a single task.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to ensure that synthetic basic intelligence benefits all of humankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is creating artificial general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is much better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were recognized as being active in 2020.
^ a b c "AI timelines: What do specialists in synthetic intelligence expect for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton stops Google and cautions of risk ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can avoid the bad stars from using it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals sparks of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change changes you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The real threat is not AI itself however the method we deploy it.
^ "Impressed by expert system? Experts state AGI is following, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might position existential risks to mankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last development that humankind requires to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the risk of extinction from AI ought to be a global priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts warn of risk of extinction from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from producing devices that can outthink us in general ways.
^ LeCun, Yann (June 2023). "AGI does not present an existential threat". Medium. There is no factor to fear AI as an existential danger.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "maker intelligence with the full variety of human intelligence.".
^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical sign system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007.
^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Artificial intelligence is transforming our world - it is on all of us to make certain that it works out". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007.
^ This list of smart qualities is based upon the topics covered by major AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we think: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reconsidered: The concept of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reevaluated: The idea of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a real boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists dispute whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar examination to AP Biology. Here's a list of hard exams both AI variations have passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended checking an AI chatbot's capability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software application engineers prevented the term synthetic intelligence for fear of being seen as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who coined the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of machine intelligence: Despite development in maker intelligence, synthetic basic intelligence is still a significant difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Artificial intelligence will not turn into a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why basic artificial intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us paradise or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in synthetic intelligence: A survey of professional viewpoint. In Fundamental issues of artificial intelligence (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024.
^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024.
^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024.
^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024.
^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022.
^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022.
^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559.
^ Goertzel & Pennachin 2006.
^ a b c (Kurzweil 2005, p. 260).
^ a b c Goertzel 2007.
^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the original on 4 December 2020. Retrieved 24 August 2020.
^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190.
^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130.
^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as smart as Siri - however a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019.
^ Grossman, Gary (3 September 2020). "We're going into the AI twilight zone in between narrow and general AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are already seeing an early example of an AGI system in the recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is arguable, but the agreement is that it is not AGI. ... If nothing else, GPT-3 tells us there is a middle ground in between narrow and general AI.
^ Quach, Katyanna. "A designer constructed an AI chatbot using GPT-3 that helped a male speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021.
^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can perform over 600 tasks, from playing games to managing robots", TechCrunch, archived from the initial on 16 June 2022, recovered 12 June 2022.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL]
^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023.
^ Bove, Tristan. "A.I. might rival human intelligence in 'simply a few years,' says CEO of Google's primary A.I. research lab". Fortune. Retrieved 4 September 2024.
^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI could pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead".
^ Sullivan, Mark (18 October 2023). "Why everyone seems to disagree on how to define Artificial General Intelligence". Fast Company.
^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024.
^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023.
^ Sandberg & Boström 2008.
^ Drachman 2005.
^ a b Russell & Norvig 2003.
^ Moravec 1988, p. 61.
^ Moravec 1998.
^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study task maps the human brain". euractiv.
^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014.
^ de Vega, Glenberg & Graesser 2008. A wide variety of views in present research, all of which need grounding to some degree
^ Thornton, Angela (26 June 2023). "How publishing our minds to a computer system might end up being possible". The Conversation. Retrieved 8 November 2023.
^ Searle 1980
^ For instance: Russell & Norvig 2003,
Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (quoted in" Encyclopedia.com"),.
MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (estimated in "AITopics"),.
Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947.
^ though see Explainable artificial intelligence for curiosity by the field about why a program acts the way it does.
^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review.
^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024.
^ Nagel 1974.
^ "The Google engineer who thinks the business's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023.
^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024.
^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024.
^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal.
^ "Artificial General Intelligence - Do [es] the expense exceed benefits?". 23 August 2021. Retrieved 7 June 2023.
^ "How we can Gain from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023.
^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023.
^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023.
^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, dangers, techniques (Reprinted with corrections 2017 ed.). Oxford, UK; New York, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2.
^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that humans will destroy ourselves". Vox. Retrieved 8 June 2023.
^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security threat' to Australia, Senate questions says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023.
^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6.
^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9.
^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023.
^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: opentx.cz Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023.
^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023.
^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023.
^ "Stephen Hawking: 'Transcendence takes a look at the implications of expert system - but are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014.
^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023.
^ "The remarkable Facebook debate in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI". The interesting Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI (in French). Retrieved 8 June 2023.
^ "Will Expert System Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023.
^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI risk: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2.
^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023.
^ Tetlow, Gemma (12 January 2017). "AI arms race dangers spiralling out of control, report warns". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023.
^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over hazard positioned however artificial intelligence can not be neglected". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023.
^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023.
^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015.
^ Titcomb, James (30 October 2023). "Big Tech is stoking worries over AI, warn researchers". The Telegraph. Retrieved 7 December 2023.
^ Davidson, John (30 October 2023). "Google Brain creator says big tech is lying about AI extinction threat". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023.
^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market impact capacity of large language models". OpenAI. Retrieved 7 June 2023.
^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of workers could see their jobs impacted by AI. These are the tasks most impacted". euronews. Retrieved 8 June 2023.
^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we need universal fundamental earnings since 'in the future, physical work will be an option'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023.
Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021.
Chalmers, David (1996 ), The Conscious Mind, Oxford University Press.
Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007.
Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York, NY: BasicBooks. ISBN 0-465-02997-3.
Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68.
Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114.
Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4.
Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013.
Goertzel, Ben (December 2007), "Human-level artificial general intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, recovered 1 April 2009.
Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, retrieved 7 May 2011.
Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Point of view, archived from the initial on 17 August 2007, obtained 30 August 2007.
Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5.
Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press.
Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Expert System: a paper seminar, Science Research Council.
Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7.
McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The supreme effort is to make computer programs that can fix problems and achieve objectives on the planet as well as humans.
Moravec, Hans (1988 ), Mind Children, Harvard University Press
Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, obtained 23 June 2006
Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, retrieved 7 November 2009
Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022.
Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4
NRC (1999 ), "Developments in Artificial Intelligence", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, obtained 29 September 2007
Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Logical Approach, New York City: Oxford University Press, archived from the original on 25 July 2009, obtained 6 December 2007
Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2
Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, obtained 5 April 2009
Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, obtained 3 September 2020
Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row
Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4
Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - by means of ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1
Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, obtained 4 September 2013 - by means of ResearchGate
Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, recovered 31 August 2012
Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what might be called "Dyson's Law") that "Any system easy adequate to be easy to understand will not be complicated enough to behave intelligently, while any system made complex enough to act smartly will be too made complex to comprehend." (p. 197.) Computer researcher Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead simple stupid. They work, however they work by strength." (p. 198.).
Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, obtained 25 July 2010.
Gleick, James, "The Fate of Free Choice" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from devices. For biological creatures, reason and purpose originate from acting in the world and experiencing the repercussions. Artificial intelligences - disembodied, complete strangers to blood, sweat, and tears - have no celebration for that." (p. 30.).
Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013.
- Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably anticipate that those who hope to get abundant from AI are going to have the interests of the rest of us close at heart,' ... composes [Gary Marcus] 'We can't count on governments driven by project finance contributions [from tech business] to push back.' ... Marcus details the needs that people ought to make of their governments and the tech companies. They consist of transparency on how AI systems work; compensation for individuals if their data [are] used to train LLMs (big language model) s and the right to grant this usage; and the capability to hold tech business liable for the harms they trigger by eliminating Section 230, enforcing cash penalites, and passing more stringent product liability laws ... Marcus likewise recommends ... that a new, AI-specific federal agency, similar to the FDA, the FCC, or the FTC, might supply the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... suggests ... develop [ing] an expert licensing program for engineers that would operate in a comparable method to medical licenses, malpractice matches, and the Hippocratic oath in medicine. 'What if, like physicians,' she asks ..., 'AI engineers likewise swore to do no damage?'" (p. 46.).
Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in synthetic intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653.
Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has stymied humans for decades, exposes the limitations of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competitors has revealed that although NLP (natural-language processing) designs are capable of unbelievable feats, their abilities are extremely much restricted by the quantity of context they receive. This [...] might cause [difficulties] for scientists who hope to use them to do things such as analyze ancient languages. Sometimes, there are couple of historic records on long-gone civilizations to function as training information for such a purpose." (p. 82.).
Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to generate phony videos identical from real ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we mean reasonable videos produced using synthetic intelligence that really trick people, then they hardly exist. The phonies aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in basic, operating in our media as counterfeited evidence. Their function much better looks like that of animations, particularly smutty ones." (p. 59.).
- Leffer, Lauren, "The Risks of Trusting AI: We must avoid humanizing machine-learning designs used in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81.
Lepore, Jill, "The Chit-Chatbot: Is talking with a maker a conversation?", The New Yorker, 7 October 2024, pp. 12-16.
Marcus, Gary, "Artificial Confidence: Even the latest, buzziest systems of artificial basic intelligence are stymmied by the same old issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45.
McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009.
McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1.
Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, obtained 29 September 2007.
Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill.
Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, presented and dispersed at the 2007 Singularity Summit, San Francisco, California.
Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead police to neglect contradictory evidence?", The New Yorker, 20 November 2023, pp. 20-26.
Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test however revealed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at jobs that require genuine humanlike reasoning or an understanding of the physical and social world ... ChatGPT appeared unable to reason rationally and tried to rely on its huge database of ... facts derived from online texts. "
- Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are effective however undependable. Rules-based systems can not handle circumstances their developers did not anticipate. Learning systems are limited by the information on which they were trained. AI failures have actually currently led to disaster. Advanced autopilot functions in vehicles, although they carry out well in some situations, have actually driven cars without alerting into trucks, concrete barriers, and parked cars. In the incorrect situation, AI systems go from supersmart to superdumb in an immediate. When an opponent is attempting to manipulate and hack an AI system, the risks are even higher." (p. 140.).
Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267.
- Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by brand-new technologies but rely on the timelelss human propensity to anthropomorphise." (p. 29.).
Williams, R. W.; Herrup, K.